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Machine Learning: Unsupervised Classification 

Abstract 
This paper describes a Bayesian technique for unsupervised classification 
of data and its computer implementation, Autoclass. Given real valued or 
discrete data, AutoClass automatically determines the most probable num- 
ber of classes present in the data, the most probable descriptions of those 
classes, and each object's probability of membership in each class. The 
program performs as well as or better than existing automatic classifica- 
tion systems when run on the same data, and contains no ad hoc similarity 
measures or stopping criteria. Researchers have also applied AutoClass to 
several large databases where it has discovered classes corresponding to new 
phenomena which were previously unsuspected. 
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1 Introduction 

1 

Autoclass is an automatic classiuiation system which calculates proba- 
bilistic descriptions of classes in data, rather than merely enumerating the 
objects in each class. The system implements the Bayesian solution to the 
problem of separating a finite mixture distribution and provides a sound 
procedure for determining the number of classes present in such a mix- 
ture. Rather than making assumptions about what classes the user desires, 
The AutoClass approach makes assumptions about the nature of the ac- 
tual classes and then uses Bayes’s theorem to derive the optimal separation 
criterion. No additional principles are required. 

The resulting classification system has several important advantages 
over most previous work: 

0 AutoClass automatically determines the most probable number of 
classes given the data and class model. The classes found represent 
actual structure in the data. Given random data, Autoclass generates 
a single class. 

0 Classification is probabilistic. Class descriptions are given in terms of 
probability distributions, and Bayes’s theorem is all that is required 
to perform classification. No ad hoc similarity measure, stopping rule, 
or clustering quality criterion is needed. Decision theory is directly 
applicable to the probability distributions calculated by Autoclass. 

0 Class assignments are not absolute. No datum is completely included 
in or excluded from any class. The resulting “fuzzy” classes capture 
the common sense notion of class membership better than a categor- 
ical classification. 

0 Real valued and discrete attributes may be freely mixed. Missing at- 
tribute values and “tree valued” attributes can be easily incorporated 
into the Autoclass model also. 

0 Classifications are invariant to changes of the scale or origin of the 
data. 
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2 Theory 
When classifying a database, Autoclass does not attempt to partition the 
data into classes, but rather computes probabilistic descriptions of classes 
which account for the observed data. In order to find classes in a set of 
data, we make explicit assumptions about the nature of the classes. These 
assumptions take the form of parameterized probabilistic models of the 
classes, where the parameters are unknown. The task of classification then 
becomes the problem of estimating these classification parameters from a 
given database. The class distributions are defined over the attribute space 
of the objects and give the probability distribution of the attributes of an 
object known to belong to a given class. Classification has long been studied 
in these terms as the theory of finite mixtures. Everitt and Hand [6] provide 
an excellent review containing over 200 references. 

AutoClass is an implementation of the Bayesian solution to the mixture 
separation problem. We begin with an uninformative prior probability dis- 
tribution over the classification parameters (which expreses our u priori 
ignorance of the parameters) and we then update this distribution using 
the information in the database to calculate the posterior probability distri- 
bution of the parameters. This posterior distribution allows us to determine 
both the most probable classification parameters for any number of classes, 
and the most probable number of classes present in the database. From this 
information it is also possible to calculate the probability that each object 
is a member of each class. Note that it is possible to accurately determine 
the parameters of strongly overlapping classes despite the fact that very 
few of the objects can be assigned to any class with high probability. 

In addition to providing the database, the user selects an appropriate 
class model (by defining the class distributions). Autoclass then calculates 
the optimal values of the parameters for various numbers of classes and the 
probability that each number of classes is actually present in the data. As 
final output, AutoClass provides the most probable number of classes, the 
most probable values of the classification parameters for that number of 
classes, and also the probability of membership of each object in each class. 

Autoclass uses a Bayesian variant of Dempster and Laird’s EM Alg- 
rithm [3] to search for the maximum of the posterior distribution of the 
classification parameters and forms an approximation to the distribution 
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about this maximum. AutoClass also includes heuristic tecniques for avoid- 
ing local maxima in the search. Although these computational issues are 
quite difficult to solve in practice, they are only algorithmic issues and do 
not require any additional theory. Greater details of the Bayesain theory 
of finite mixtures is given in the Appendix. The AutoClass algorithm is 
descirbed thoroughly by Cheeseman et d. [l] 

The class descriptions produced by AutoClass can be used for predic- 
tion of future objects. For example, if Autoclass is given a database of 
symptoms and diagnosed diseases, Autoclass can find classes which can 
be used to predict the disease of a new object given its symptoms. This 
prediction is optimal given the assumptions about the causal mechanisms 
expressed in the class distributions. 

Autoclass can also be used to learn from examples. Objects may be 
presented to Autoclass pre-classified by a teacher. Thus tutored learning 
can be combined with untutored learning in the same system and using the 
same theory. 

3 Assumptions 
The major assumption of Autoclass (and any mixture method) is that a 
family of class distributions can be found which account for the observed 
data. AutoClass treats the class distributions modularly so the user is free 
to develop new class distributions-the user is not constrained to use the 
class distributions supplied with Autoclass. 

The current AutoClass program (Autoclass 11) assumes that all at- 
tributes are independent within each class. Discrete attributes can take on 
arbitrary multinomial distributions, and real valued attributes are assumed 
to be distributed normally. The model does permit any attribute values to 
be missing from the data. Despite these restrictive assumptions, AutoClass 
I1 is able to discern structure in many actual data bases, as discussed in 
Section 4. 

We have nearly completed Autoclass I11 which includes multivariate 
normal distributions and exponential distributions for real attributes. We 
are also developing the theory for automatic selection of class distributions, 
allowing the system to take advantage of increased model complexity when 
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the data justify the estimation of the additional parameters. Thus, simple 
theories (with correspondingly few parameters) can give way to more com- 
plex theories as the amount of data increases. The theory for such model 
selection is very similar to the selection of the number of classes. 

It is important to point out that we do not assume that the classifica- 
tion parameters or the number of classes are "random variables." Rather, 
we merely assume that they are unknown quantities about which we wish 
to perform inference. The prior distributions used do not represent a fre- 
quency distribution of the parameters, but rather the state of knowledge of 
the observer (in this case Autoclass) before the data are observed. Thus 
there can be no "true values of the prior probabilities" as Duda and Hart 
suggest [SI, since prior probabilities are a function of the observer, not of 
the world. Although Cox gave the first full explanation of this issue in 1946 
(21, it remains a source of confusion today.' 

Bayesian methods have often been discredited due to their use of prior 
distributions, and the belief that this implies their results are personalistic 
and therefore somewhat arbitrary. The default prior distribution used in 
Autoclass, however, is uninformative and completely impersonal.2 It is in- 
variant to any change of scale or origin, so in no way does it express any u 
priori  opinions or biases. Rather, it expresses complete u priori  ignorance 
of the parameters (as defined by specific invariance criteria). On the other 
hand, the ability to incorporate prior knowledge can be of great use when 
such information is available. Many non-Bayesian approaches have diffi- 
culty incorporating such information directly. Autoclass provides the user 
with the option of incorporating prior information into the classification or 
using the uninformative prior distribution. 

4 Applications 
Autoclass has classified data supplied by researchers active in various do- 
mains and has yielded some new and intriguing results: 

0 Iris Database 
'See Jaynes [9] for a recent discussion of the nature of Bayesian inference and its 

'See Jaynes Ill] for a lucid description of uninformative priors. 
relationship to other methods of statistical inference. 
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Fisher’s data on three species of iris [8] are a classic test for classifica- 
tion systems. AutoClass discovers the three classes present in the data 
with very high confidence, despite the fact that not all of the cases 
can be assigned to their classes with certainty. Wolfe’s NORMIX and 
NORMAP [15] both incorrectly found four classes, and Dubes’s MH 
index [4] offers only weak evidence for three clusters. 

0 Soybean Disease Database 

Autoclass found the four known classes in Stepp’s soybean disease 
data, providing a comparison with Michalski’s CLUSTER/2 system 
[ 131. Autoclass’s class assignments exactly matched Michalski’s- 
each object belonged overwhelmingly to one class, indicating excep- 
tionally well separated classes for so small a database (47 cases, 35 
attributes). 

0 Horse Colic Database 

AutoClass analyzed the results of 50 veterinary tests on 259 horses 
and extracted classes which provided reliable disease diagnoses, de- 
spite the fact that almost 40% of the data were missing. 

0 Infrared Astronomy Database 

The Infrared Astronomical Satellite tabulation of stellar spectra is not 
only the largest database Autoclass has assayed (5,425 cases, 94 at- 
tributes) but the least thoroughly understood by domain experts. Au- 
toclass’s results differed significantly from NASA’s previous analysis. 
Preliminary evaluations of the new classes by infrared astronomers 
indicate that the hitherto unknown classes have important physical 
meaning. The AutoClass infrared source classification is the basis of 
a new star catalog to appear shortly. 

We are actively collecting and analyzing other databases which seem 
appropriate for classification, including an AIDS database and a second 
infrared spectral database. 
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5 Comparison with Other Methods 
Several different communities are interested in automatic classification, and 
we compare AutoClass to some existing methods: 

0 Maximum Likelihood Mixture Separation 
AutoClass is most similar to the maximum likelihood methods used to 
separate finite mixtures as described in the statistical pattern recogni- 
tion literature. The mathematical statement of the problem is identi- 
cal to that discussed by Duda and Hart [5 ] ,  and by Everitt and Hand 
[6], The primary difference lies in Autoclass’s Bayesian formulation, 
which provides a more effective method for determining the number 
of classes than existing methods based on hypothesis testing. A more 
detailed comparison of AutoClass to maximum likelihood methods is 
given by Cheeseman et d. [l] 

0 Cluster Analysis 

Cluster analysis and Autoclass’s finite mixture separation differ fun- 
damentally in their goals. Cluster analysis seeks classes which are 
groupings of the data points, definitively assigning points to classes; 
AutoClass seeks descriptions of classes that are present in the data, 
and never assigns points to classes with certainty. 
The other major difference lies in the assumptions made about the 
form of the classes. To attempt the problem of classification, some 
assumptions must be made about the nature of the classes sought. 
The AutoClass method makes these assumptions directly by specify- 
ing class distributions and then derives the optimal class separation 
criterion using Bayes’s theorem. Cluster analysis techniques make 
their assumptions indirectly by specifying a criterion for evaluating 
clustering hypotheses, such as maximizing intra-class similarity. 

0 Conceptual Clustering 
Both Autoclass and conceptual clustering methods seek descriptions 
of the clusters rather than a simple partitioning of the objects. The 
main difference between the methods is the choice of concept lan- 
guage: AutoClass uses a probabilistic description of the classes, while 
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Michalski and Stepp [14] use a logical description language. The 
logic-based approach is particularly well suited to logically ”clean” 
applications, whereas AutoClass is effective when the data are noisy 
or the classes overlap substantially. 

Conceptual clustering techniques specify their class assumptions with 
a “clustering quality criterion” such as Fisher’s category utility [?I. As 
with cluster analysis, these are assumptions about what clusterings 
are desired rather than about the nature of the actual clusters. This 
may reflect a difference in goals since Langley’s CLASSIT [12] and 
Michalski’s CLUSTER/2 [ 131 programs seek explicitly to emulate hu- 
man classification, which is a more difficult problem than AutoClass 
addresses. 

6 Conclusion 
We have developed a practical and theoretically sound method for deter- 
mining the number of classes present in a mixture, based solely on Bayes’s 
theorem. Its rigorous mathematical foundation permits the assumptions in- 
volved to be stated clearly and analyzed carefully. The AutoClass method 
performs better at determining the number of classes than existing mixture 
separation methods and also compares favorably with cluster analysis and 
conceptual clustering methods. 

Appendix 

This appendix presents the Bayesian theory of finite mixtures. This theory 
is the mathematical basis of the AutoClass algorithm. 

In the theory of finite mixtures, each datum is assumed to be drawn 
from one of m mutually exclusive and exhaustive classes. Each class is 
described by a class distribution, p(zi I zi E Cj, Jj), which gives the proba- 
bility distribution of the attributes of a datum if it were known to belong to 
the class Cj. These class distributions are assumed to be parameterized by 
a class parameter vector, ij, which for a normal distribution would consist 
of the class mean, pi, and variance, u:. The probability of an object be- 
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ing drawn from class j is called the class probability or mixing proportion, 
m j .  Thus, the probability distribution of a datum drawn from a mixture 
distribution is 

m 

p(zi I e’, ii, rn) = mj p(zj I xi E Cj, ij). (1) 
j=l 

We assume that the data are drawn from an exchangeable (static) 
process-that is, the data are unordered and are assumed to be indepen- 
dent given the model. Thus, the joint probability distribution of a set of n 
data drawn from a finite mixture is 

n 
p(.’ I i, ii, rn) = n p(zi I 3, ii, rn). 

i= 1 

For a given value of the class parameters, we can calculate the proba- 
bility that an object belongs to each class using Bayes’s theorem, 

Thus, the classes are “fuzzy” in the sense that even with perfect knowledge 
of an object’s attributes, it will only be possible to determine the probability 
that it is a member of a given class. 

We break the problem of identifying a finite mixture into two parts: 
determining the classification parameters for a given number of classes, and 
determining the number of classes. Rather than seeking an estimator of 
the classification parameters (the class parameter vectors, 0 ,  and the class 
probabilities, n‘), we seek their full posterior probability distribution. The 
posterior distribution is proportional to the product of the prior distribution 
of the parameters, p(i, n‘ I m), and the likelihood function, p(Z I t?, 3, m): 

4 

where p(Z I rn) is simply the normalizing constant of the posterior distri- 
bution, and is given by 

p(.‘ I rn) = //p($, ii I rn) p(.’ 1 i, ii, rn) de’dii. (5) 
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To solve the second half of the classification problem (determining the 
number of classes) we calculate the posterior distribution of the number of 
classes, m. This is proportional to the product of the prior distribution, 
p(m), and the pseuddikelihood function, p(.‘ I m), 

The pseudo-likelihood function is just the normalizing constant of the pos- 
terior distribution of the classification parameters (Equation 5) .  Thus, to 
determine the number of classes, we first determine the posterior distri- 
bution of the classification parameters for each possible number of classes. 
We then marginalize (integrate) out the classification parameters from the 
estimation of the number of classes-in effect, treating them as unuisance” 
parameters . 

In general, the marginalization cannot be performed in closed form, so 
Autoclass searches for the maximum of the posterior distribution of the 
classification parameters (using a Bayesian variant of Dempster and Laird’s 
EM Algorithm [3]) and forms an approximation to the distribution about 
this maximum. See Cheeseman et al. (11 for full details of the Autoclass 
algorithm. 
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